Algebraic Proof Question Paper

Course	EdexcelIGCSE Maths
Section	2. Equations, Formulae \& Identities
Topic	Algebraic Proof
Difficulty	Medium

Time allowed: 50

Score: /40
Percentage: /100

Question 1

Prove algebraically that
$(2 n+1)^{2}-(2 n+1)$ is an even number
for all positive integer values of n.
[3 marks]

Question 2

Show that $(n+3)^{2}-(n-3)^{2}$ is an even number for all positive integer values of n.

Question 3

n is an integer greater than 1
Prove algebraically that $n^{2}-2-(n-2)^{2}$ is always an even number.

Question 4

Prove that the difference between two consecutive square numbers is always an odd number. Show clear algebraic working.

Question 5

N is a multiple of 5
$A=N+1$
$B=N-1$
Prove, using algebra, that $A^{2}-B^{2}$ is always a multiple of 20

Question 6

$E=n^{2}+n+5$
Ali thinks that the value of E will be a prime number for any whole number value of n.
Is Ali correct?
You must give a reason foryour answer.

Question 7

p is a positive number.
n is a negative number.
For each statement, tick the correct box.

	Always true	Sometimes true	Never true
$p+n$ is positive	\square	\square	\square
$p-n$ is positive	\square	\square	\square
$p^{2}+n^{2}$ is positive	\square	\square	\square
$p^{3} \div n^{3}$ is positive	\square	\square	\square

Question 8

x is an integer.
Prove that $35+(3 x+1)^{2}-2 x(4 x-3)$ is a square number.

Question 9

Which of these is a correct identity?
Circleyour answer.
$x+4 x \equiv 5 x$
$6 x \equiv 18$
$2 x+1 \equiv 7$
$7 x+9 \equiv x$
[1 mark]

Question 10

$$
k=n^{2}+9 n+1
$$

Mosays,
" k will be a prime number for all integer values of n from 1 to 9 "
Show that Mo is wrong.
You must show that your value of k is not prime.

Question 11

Tick whether the following statement is true or false.
Give a reason for your answer.
When n is a positive integer, the value of $2 n$ is always a factor of the value of $20 n$.
True \square False \square
[1 mark]

Question 12

Prove that the mean of any four consecutive even integers is an integer.

Question 13a

Prove that the sum of four consecutive whole numbers is always even.

Question 13b

Give an example to show that the sum of four consecutive integers is not always divisible by 4.

