Algebraic Proof

Question Paper

Course	EdexcelIGCSEMaths
Section	2. Equations, Formulae & Identities
Торіс	Algebraic Proof
Difficulty	Medium

Time allowed:	50
Score:	/40
Percentage:	/100

Question 1

Prove algebraically that

$$(2n + 1)^2 - (2n + 1)$$
 is an even number

for all positive integer values of n.

[3 marks]

Question 2

Show that $(n+3)^2 - (n-3)^2$ is an even number for all positive integer values of n.

[3 marks]

Question 3

n is an integer greater than 1

Prove algebraically that $n^2 - 2 - (n-2)^2$ is always an even number.

[4 marks]

www.mikedemy.com

Question 4

Prove that the difference between two consecutive square numbers is always an odd number. Show clear algebraic working.

[3 marks]

Question 5

N is a multiple of 5

A = N + 1B = N - 1

Prove, using algebra, that $A^2 - B^2$ is always a multiple of 20

[3 marks]

Question 6

 $E = n^2 + n + 5$

Ali thinks that the value of E will be a prime number for any whole number value of n.

Is Ali correct? You must give a reason for your answer.

www.mikedemy.com

[2 marks]

Question 7

p is a positive number.

n is a negative number.

For each statement, tick the correct box.

	Always true	Sometimes true	Never true	
p + n is positive				
p-n is positive				
$p^2 + n^2$ is positive				
$p^3 \div n^3$ is positive				

[4 marks]

Question 8

x is an integer.

Prove that $35 + (3x + 1)^2 - 2x(4x - 3)$ is a square number.

[4 marks]

Question 9

Which of these is a correct identity?

Circle your answer.

$x + 4x \equiv 5x$ $6x \equiv 18$ $2x + 1 \equiv 7$ $7x + 9 \equiv x$

[1mark]

Question 10

 $k = n^2 + 9n + 1$

Mosays,

"k will be a prime number for all integer values of n from 1 to 9"

Show that Mo is wrong. You **must** show that your value of k is **not** prime.

[3 marks]

Question 11

Tick whether the following statement is true or false.

Give a reason for your answer.

When n is a positive integer, the value of 2n is **always** a factor of the value of 20n.

True 🗖	False 🗖
--------	---------

[1 mark]

Question 12

 $\label{eq:prove that the mean of any four consecutive even integers is an integer.$

[4 marks]

Question 13a

 $\label{eq:prove that the sum of four consecutive whole numbers is always even.$

[3 marks]

Question 13b

Give an example to show that the sum of four consecutive integers is **not** always divisible by 4.

www.mikedemy.com

[2 marks]